Strongly homotopy algebras of a Kähler manifold

نویسنده

  • S. A. Merkulov
چکیده

It is shown that any compact Kähler manifold M gives canonically rise to two strongly homotopy algebras, the first one being associated with the Hodge theory of the de Rham complex and the second one with the Hodge theory of the Dolbeault complex. In these algebras the product of two harmonic differential forms is again harmonic. If M happens to be a Calabi-Yau manifold, there exists a third strongly homo-topy algebra closely related to the Barannikov-Kontsevich extended moduli space of complex structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Period Map for Generalized Deformations

For every compact Kähler manifold we give a canonical extension of Griffith’s period map to generalized deformations, intended as solutions of Maurer-Cartan equation in the algebra of polyvector fields. Our construction involves the notion of Cartan homotopy and a canonical L∞ structure on mapping cones of morphisms of differential graded Lie algebras.

متن کامل

Rational Homotopy Types of Mirror Manifolds

We explain how to relate the problem of finding a mirror manifold for a Calabi-Yau manifold to the problem of characterizing the rational homotopy types of closed Kähler manifolds. In this paper, we show that under a rationality condition on the (classical) Yukawa coupling constants for a Calabi-Yau manifold M , a rational homotopy type can be determined. If M has a mirror manifold M̃ , then M̃ h...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

On the Associative Homotopy Lie Algebras and the Wronskians

Representations of the Schlessinger–Stasheff’s associative homotopy Lie algebras in the spaces of higher–order differential operators are analyzed. The W transformations of chiral embeddings, related with the Toda equations, of complex curves into the Kähler manifolds are shown to be endowed with the homotopy Lie algebra structures. Extensions of the Wronskian determinants that preserve the pro...

متن کامل

On the homotopy types of Kähler manifolds and the birational Kodaira problem

The so-called Kodaira problem left open by this result asked whether more generally any compact Kähker manifold can be deformed to a projective complex manifold. Recently, we solved negatively this question by constructing, in any dimension n ≥ 4, examples of compact Kähler manifolds, which do not deform to projective complex manifolds, as a consequence of the following stronger statement conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999